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Abstract—Structural health monitoring (SHM) of bridges is
crucial for ensuring safety and long-term durability, however,
standard damage-detection algorithms are computationally
intensive. This article proposes a computationally efficient
algorithm based on graph signal processing (GSP) to lever-
age the underlying network structure in the data. Under the
assumption that damages impact both spatial and temporal
structures of the sensor data, the algorithm combines spatial
and temporal information from accelerometers by computing
the smoothness of graph signals expanded along time. The
Kullback–Leibler (KL) divergence is used as dissimilarity
metric to distinguish between healthy condition and presence of a damage, while Tukey’s method for outliers removal and
sequential detection via exponential weighted moving average (EWMA) are then employed for performance improvement.
The proposed GSP-based SHM system is appealing in terms of simplicity and low-complexity and is also suitable for real-
time monitoring. The effectiveness in terms of detection performance is validated both on synthetically generated data
and real-world measurements.

Index Terms— Finite-element model (FEM), graph signal processing (GSP), joint graph Laplacian, Kullback–Leibler
(KL) divergence, KW51 bridge, structural health monitoring (SHM).

I. INTRODUCTION

D IGITALIZATION is pervading several areas ranging
from entertainment activities to industrial applications.

Real-time monitoring and anomaly detection are among the
relevant topics being enhanced by the development and inte-
gration of digital solutions into safety-critical systems, given
the capability of processing data collected by sensors deployed
in environments of interest.
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Structural health monitoring (SHM) is an interdisciplinary
field playing a crucial role in civil engineering relying on
the integration of signal processing, data mining, and sensor
technology. SHM aims at safety by enabling cost-effective pre-
dictive maintenance of civil infrastructures such as buildings
and bridges [1]. For efficient monitoring, sensors are strategi-
cally placed at various locations on these structures, leading
to the generation of spatiotemporal data usually arranged into
multivariate time series.

Graph signal processing (GSP) is an effective approach
for analyzing data originating from irregular and com-
plex structures. GSP extends classic signal-processing tools
(e.g., Fourier analysis and filtering) with application to
graph-based structures and has established the groundwork
for developing novel graph-based learning algorithms [2].
These developments have attracted considerable attention from
researchers across various fields encompassing applications
from detecting faulty sensors [3] to advancements in coal
mining [4].

SHM and GSP appears to be a good match given the
relevance of the spatial information related to the topology
of the physical structure to be monitored and the potential
improvements in terms of performance and computational
complexity. In this work, we investigate the feasibility of a
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GSP-based SHM approach for damage detection of bridges.
Aging bridge infrastructures worldwide pose growing chal-
lenges due to increased mobility, traffic volume, and climate
change, which accelerate their deterioration [5], [6]. Current
procedures for bridge maintenance primarily depend on man-
ual and visual inspections, which are costly, time-consuming,
and largely subjective. Hence, the demand for more efficient
and objective SHM approaches is pressing [7].

A. Related Work
Among SHM techniques, those based on vibrations have

gained substantial attention due to their capability to record the
comprehensive behavior of the structure and detect damages
without any prior information related to the damaged area
[8]. Vibration-based SHM techniques for damage detection
can essentially be divided into two groups: 1) model-based
methods and 2) data-driven methods.

Methods from the former group rely on numerical models
alongside experimental data to assess the structural integrity
and mostly rely on measuring and processing strain. Despite
their popularity and precision, these methods present high
computational complexity, making them unsuitable for large-
scale SHM applications [9]. Recently, edge computing has
been considered as an opportunity to reduce the amount of
data sharing in SHM systems [10].

Data-driven approaches mainly use data mining and
advanced signal-processing techniques to extract valuable
information directly from the sensor data collected from
the target bridge. Although the training phase might be
computationally expensive, data-driven methods are more
suitable for real-time damage detection in large structures,
given less-intensive computational requirements during oper-
ation [11]. Among data-driven approaches, cable losses in a
cable-stayed bridge were assessed via identification of rotation
influence lines by instrumenting only two locations at the
bridge bearings [12]. Similarly, accelerometers were used to
identify structural rotation and related influence lines to detect
damages due to the loss of bending stiffness in the bridge
deck [13], [14]. Also, low- and bandpass filters were shown
to detect damage-sensitive structural features from acceleration
measurements [15], [16]. First-order eigen-perturbation tech-
niques for SHM have been discussed in [17] and [18] for the
identification of the structural modal parameters and damage
assessment.

It is worth noticing that despite the performance in terms
of damage evaluation, the practical application of most
approaches to SHM is still challenging due to the need
of data obtained from continuous bridge monitoring [19].
However, in real-world scenarios, continuous monitoring is
extremely challenging (and sometimes not practical) due to
various constraints (e.g., limited power, limited bandwidth,
and difficulties with batteries replacement) particularly when
reliant on wireless sensor networks [20], [21]. Thus, event-
triggered sensing systems have emerged, designed to focus on
significant portions of data, reduce power consumption and
promote enduring operation of sensor nodes [22].

Furthermore, while most data-driven research on damage
assessment in bridges has focused on the use of ambient

vibration data or static effects, recent studies recognize
vehicle-induced or forced responses as useful for performing
damage assessment [23]. These recent monitoring techniques
and related data interpretations have been explored with appli-
cation to both highway and railway bridges [24]. Artificial neu-
ral networks have been proposed for classifying bridge health
and damage states using deck acceleration and bridge weigh-
in-motion data [25], [26]. Long short-term-memory neural
networks and other deep neural networks have been explored
focusing on reducing the number of false alarms due to
sensor failures [27]. Other SHM methods include time-series
analysis for global monitoring of railway bridges [28] and
the use of autoregressive models to extract damage-sensitive
features from traffic-induced vibration responses [29]. Finally,
optical fiber networks have shown to provide relevant benefits,
especially as an alternative when conventional sensors cannot
capture peak strains [30], while some preliminary results
on the development of data-driven SHM monitoring systems
based on noncontact sensing techniques (e.g., based on image
processing) are found in [31].

In summary, most existing works and methodologies have
certain limitations, such as requiring data from the continu-
ous monitoring of the bridge or performing computationally
expensive training of deep neural networks. To overcome these
limitations, this study aims to develop a methodology based
on GSP that can extract damage-sensitive features from data
generated by trains crossing by utilizing limited amount of
data, eliminating the need for continuous monitoring.

B. Contribution and Paper Organization
Motivated by the previous discussion, this article presents

an effective algorithm for detecting structural damages on
bridges. The algorithm leverages GSP techniques to extract
information from data acquired by sensors mounted on the
bridge using forced response. The algorithm incorporates the
knowledge of sensor placement on the bridge to extract the
underlying graph structure and relies on the concepts of
smoothness and Kullback–Leibler (KL) divergence. The main
contribution of the article is the following.

1) The proposed method adopts an event-based approach
focusing on forced vibrations where the data is collected
in relation to particular events (such as a vehicle or train
crossing the bridge), thus, unlike continuous monitoring
systems, being energy-efficient.

2) The proposed method relies on tools from GSP to
integrate the topology of the sensor network together
with the measured data from the sensors.

3) The proposed algorithm is computationally efficient and
does not require learning any parameter.

4) Performance has been assessed on both synthetic data
from numerical simulations and realistic data from real-
world measurements.

The remainder of this article is organized as follows.
Section II presents the fundamentals of GSP, while the GSP-
based SHM approach is described in detail in Section III.
Section IV provides a description of the datasets considered
for the validation of the proposed approach (one dataset is
synthetically generated from numerical simulations and one
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dataset is collected from real-world measurements). The cor-
responding achieved performance are presented and discussed
in Section V, which includes also a comparison with one of
the common traditional approaches in structural engineering.
Finally, Section VI summarizes the article and adds some final
remarks.

Notations: Lower-case (resp. upper-case) bold letters denote
column vectors (resp. matrices), with ai (resp. Ai, j ) repre-
senting the i th entry (resp. the (i, j)th entry) of a (resp. A);
diag(a) denotes a diagonal matrix with a on the main diagonal;
I is the identity matrix; upper-case calligraphic letters denote
finite sets, with |A| being the cardinality of A; R denotes the
set of real numbers; (·)T, tr(·), and ∥·∥ denote transpose, trace,
and Euclidean norm operators, respectively; × is the Cartesian
product.

II. PRELIMINARIES OF GSP
We describe the main concepts of GSP necessary for the

development of the proposed SHM approach. More specifi-
cally, we focus on discussing the graph Laplacian matrix and
the graph Fourier transform (GFT) in Section II-A and the
normalized smoothness in Section II-B.

A sensor network is usefully represented via an undirected
graph G(V, E, A), where V represents the set of N = |V|

nodes (i.e., sensors), E represents the set of edges (i.e., the
connection among the nodes), and A ∈ RN×N is the adjacency
matrix describing the connectivity of the graph,1 which is
defined as

Ai, j =

{
1, node i and node j are connected
0, else.

A graph signal is defined by a vector x ∈ RN , where the
i th element xi collects the value from the i th node in the
corresponding graph G.

A. Graph Laplacian and GFT
For a given graph G(V, E, A), we define the graph Lapla-

cian matrix as

L = D − A (1)

where the degree matrix D is a diagonal matrix whose entries
on the main diagonal are Di,i =

∑N
j=1 Ai, j . The graph Lapla-

cian matrix is one of the most relevant operators in GSP as its
eigendecomposition defines the GFT [32]. More specifically,
L = Q3 QT defines the orthogonal matrix of eigenvectors
Q ∈ RN×N , namely the graph Fourier basis, and the diagonal
matrix 3 = diag(λ1, . . . ,λN ) with λ1 ≤ · · · ≤ λN being the
corresponding eigenvalues, namely the spatial frequencies.

The GFT of the graph signal x defined on G is given by
xF = QTx = [qT

1 x, . . . , qT
N x]

T. It is worth noticing that the
i th element of the GFT corresponds to the projection of the
graph signal onto the i th eigenvector.

B. Normalized Smoothness
The level of variation in a graph signal (i.e., how similar

are the values on neighboring nodes) is a relevant information,

1More general representations for the graph connectivity are possible.

Fig. 1. Schematic example of a bridge equipped with sensors collecting
information when a train is traversing it.

which might be related to anomalies [33]. It may be inferred
via the normalized smoothness, formally defined as

sG(x) =
xT Lx
∥x∥2 . (2)

More specifically, exploiting the eigendecomposition of the
graph Laplacian matrix, (2) can be expressed as

sG(x) =

N∑
i=1

λi

∥x∥2

∥∥qT
i x

∥∥2

which shows how the smoothness is a linear combination of
the energy content of frequency components qT

i x weighted
with the corresponding spatial frequencies λi (normalized
with the signal energy ∥x∥

2), thus resulting in a measure of
variation (the larger the smoothness, the larger the level of
variation for the graph signal). The range of the smoothness
is limited by the maximum Laplacian eigenvalue2 [34], that
is, sG(x) ∈ [0, maxi λi ].

III. GSP-BASED SHM
We consider a scenario involving a bridge equipped with

N sensors, each collecting M temporal measurements each
time an event (e.g., a train or vehicle crossing the bridge) is
completed, as illustrated in Fig. 1. The eth event is associated
with a multivariate time series arranged in a data matrix
X[e] ∈ RN×M , where Xn,m[e] denotes the mth measurement
from the nth sensor.

Information about the bridge and sensor placement is
assumed to be known in the form of a given adjacency matrix
(A) representing the topology of the sensor network at each
discrete time. The data matrix is split into C nonoverlapping
snapshots, each collecting data from all the sensors and K
consecutive discrete times,3 that is, the ℓth snapshot from the
eth event includes data {Xn,m[e]}N ; ℓK

n=1; m=(ℓ−1)K+1 arranged in
K graph signals {x(e;ℓ)

[k]}
K
k=1 with x (e;ℓ)

n [k] = Xn,(ℓ−1)K+k[e].

A. Spatiotemporal Graphs
Including the temporal dynamics into the graph representa-

tion is crucial to operate with time-series data from sensors.
Referring to the generic snapshot from the generic event and
omitting here the superscript (e; ℓ) for ease of notation, x[k]

denotes the graph signal from the kth discrete-time instant,
with k = 1, 2, . . . , K .

One possible approach is to extend the concept of graph and
the corresponding graph signal to a spatiotemporal domain,
where each node refers to a specific sensor in a given time

2The smoothness can also be defined using the normalized graph Lapacian
(L = I − D−1/2 AD−1/2), in which case the upper range limit is 2.

3Without loss of generality, we assume that M/K is an integer number.
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Fig. 2. Spatiotemporal graphs with N = 4 sensors and K discrete
times. Red nodes denote the spatial placement of the sensors, whereas
blue nodes represent their temporal extension. Spatial (resp. temporal)
edges are depicted in black (resp. green). (a) Linear spatial topology.
(b) Triangular spatial topology.

instant, and edge representing either spatial or temporal con-
nections among nodes. The spatiotemporal graph is described
via the set of nodes and edges and the adjacency matrix.
The spatiotemporal graph signal (x̃) is defined as the vector
stacking the graph signal from each discrete time, that is, x̃T

=

[x[1]
T, . . . , x[K ]

T
]. A similar analysis about the GFT and

normalized smoothness can be done by obtaining the corre-
sponding Laplacian matrix (namely spatiotemporal Laplacian
matrix (L̃)), related eigendecomposition, and corresponding
spatiotemporal normalized smoothness (STNS)

s̃(x̃) =
x̃T L̃ x̃
∥x̃∥2

(3)

where the subscript G is removed for ease of notation.
In this work, we assume that the topology of the sensor

network is invariant with time, thus from a spatial perspective
the graph Laplacian matrix (L) is a proper representation of
the system. Also, from a temporal perspective, we assume
that each node is simply connected with its own one-step
backward and forward replicas, that is, the temporal structure
is described by the matrix 2 ∈ RK×K such that

2i, j =

{
1, j = i ± 1
0, else.

Fig. 2 shows two examples of spatiotemporal graphs with
N = 4 sensors expanded along K discrete times: the former
with a linear spatial topology, the latter with a triangular one.
Similar to (1), a Laplacian matrix for the temporal structure
is obtained as

3 = 1 − 2 (4)

where the degree matrix 1 is a diagonal matrix whose
entries on the main diagonal are 1i,i =

∑K
j=1 2i, j . Exploring

connections beyond a single time step, although potentially
beneficial, lies outside the scope of this study.

In the case of time-invariant graphs, the spatiotemporal
Laplacian matrix can be shown to be expressed as the Carte-
sian product of the two Laplacian matrices [35], that is,

L̃ = 3 × L (5)

with L̃ ∈ RK N×K N . Also, we have x̃ ∈ RK N×1.

B. Event Anomaly Detection
The proposed SHM system is meant to operate on group of

consecutive events, since relying on a single event for damage
detection might be unreliable. It is built on the following main
steps.

1) Compute the STNS statistics of the group of events.
2) Compute the deviation of the group of events from nor-

mal operation mode (represented by a reference model)
via the KL divergence.

3) Remove the outliers of the sequence of KL-divergence
values.

4) Process the sequence of KL-divergence values after
outliers removal with a sequential detection algorithm.

The eth event is associated with an STNS vector s̃[e] ∈

RC×1, where each entry s̃ℓ[e] represents an STNS value
computed by applying (3) to the graph signals from the
ℓth snapshot. We use the SNTS vector to infer the statistical
behavior of the system and assess if it resembles healthy
behavior or significantly deviates from it. We assume that
the STNS values follows a Gaussian distribution, given the
specific event, and we use the sample mean and sample
variance (i.e., the maximum-likelihood estimators [36]) as
statistical representation

µ[e] =
1
C

C∑
ℓ=1

s̃ℓ[e]

σ 2
[e] =

1
C

C∑
ℓ=1

(s̃ℓ[e] − µ[e])2. (6)

The KL divergence [37] is a statistical distance commonly
used to assess the difference between two probability density
functions (PDFs). It is worth mentioning that the KL diver-
gence is asymmetric and may be interpreted as a measure of
dissimilarity of an arbitrary PDF from a reference PDF. In the
specific case that both PDFs are Gaussian, the KL divergence
associated with the eth event is expressed as

D[e] = log
(

σ [e]
σH

)
+

(σ 2
H − σ 2

[e])-(µH − µ[e])2

2σ 2[e]
(7)

where µH and σ 2
H denote the mean and variance, respectively,

of the reference Gaussian PFD characterizing the bridge under
healthy condition. The reference mean and variance are com-
puted applying (6) to a vector collecting STNS values from
multiple events associated with healthy condition.

As for outliers removal, we apply Tukey’s method [38],
which operates based on the interquartile range (i.e., the
interval encapsulating the central 50% of the data). Any data
point outside the interval [Q1− I (Q3−Q1), Q3+ I (Q3−Q1)]

is considered an outlier, where Q1 (resp. Q3) represents the
first (resp. third) quartile of the dataset and I is a parameter
usually chosen in the range [1.5, 3].

A sequential detection algorithm, namely exponential
weighted moving average (EWMA), is then applied to the
sequence of KL-divergence values

Ze = αD[e] + (1 − α)Ze−1 (8)
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Algorithm 1 Damage Detection
Require: events, L, 3, K

1: L̃ = 3 × L
2: for e in events do
3: Initialize vector s̃[e]
4: for ℓ in e do
5: x̃ = vectored({Xn,m[e]}N ; ℓK

n=1; m=(ℓ−1)K+1)
6: s̃ℓ[e] =

x̃T L̃ x̃
∥x̃∥2 ▷ By equation (3)

7: s̃[e] = s̃ℓ[e]
8: end for
9: s̃events = APPEND(s̃[e])

10: end for
11: µH, σ 2

H = BASELINE(s̃events)

12: for e in events New do
13: Initialize vector s̃[e]
14: for ℓ in e do
15: x̃ = vectored({Xn,m[e]}N ; ℓK

n=1; m=(ℓ−1)K+1)
16: s̃ℓ[e] =

x̃T L̃ x̃
∥x̃∥2

17: s̃[e] = s̃ℓ[e]
18: end for
19: µ[e], σ 2

[e] = STATS(s̃[e]) ▷ By equation (6)
20: D[e] = KL(µ[e], σ 2

[e], µH, σ 2
H) ▷ By equation (7)

21: end for
22: D f iltered = OUTLIERREMOVAL(D)

23: Z = EWMA(D f iltered) ▷ By equation (8)
24: UCL, LCL = CL(µH, σ 2

H) ▷ By equation (9) and (10)
25: if LCL ≤ Z ≤ UCL then
26: Decision: Healthy
27: else
28: Decision: Damage
29: end if

where Ze is the decision variable to be compared with a
threshold for final decision and α ∈ (0, 1] is a parameter
trading relevance between current and previous events.

The pseudo-code of the procedure for damage detection is
illustrated in Algorithm 1.

IV. DATA DESCRIPTION

The two datasets used for validating our work are described
here: one is generated via numerical simulations (namely
Case Study 1) and one is obtained from real-world mea-
surements (namely Case Study 2). The two datasets are not
related each other and are treated separately to demonstrate
the effectiveness of the proposed algorithm on both synthetic
and real-world scenarios. The minimum number of sensors and
related positions were strategically selected to capture the first
three modes of the bridge. In scenarios with a many sensors,
these were placed at regular (spatial) intervals.

A. Case Study 1: Dataset From Numerical Simulations
The considered numerical model integrates the behaviors of

the train, the ballasted track, and the bridge.
1) The train is modeled as a sequence of consecutive

vehicles, each characterized by a multibody system with
6◦ of freedom. This model includes a primary suspension

TABLE I
BRIDGE SPECIFICATIONS

TABLE II
VARIABILITY OF THE TRAIN-MODEL PARAMETERS

system that connects the two axles of each bogie and
a secondary suspension system that supports the main
body [39].

2) The track is modeled identifying rails, pad, sleeper,
ballast, and subballast. More specifically, we employed
Class-6 track irregularities from the Federal Railroad
Administration [40]. The rail is modeled as a beam,
while the other components are treated as lumped
masses.

3) The bridge is modeled using a finite-element model
(FEM) based on Euler–Bernoulli beam theory. Each
element comprises two nodes with 2◦ of freedom per
node (specifications in Table I).

Our study examines an ICE3 Velaro train configuration
comprised of eight wagons, with mechanical properties and
dimensions as in [41]. To ascertain dynamic stability before
the train’s entry onto the bridge, we model a 100 m extension
beyond the bridge using a standard UIC60 rail design and a
sleeper spacing of 0.6 m. The presented train–track–bridge
simulation tool is available in [39] together with additional
descriptions.

In this work, we assume that the train speed and body mass
vary for each event (according to Table II), while the train’s
suspension properties remain constant. In addition, three dif-
ferent damage cases (DCs) are considered to demonstrate the
effectiveness of the proposed SHM approach, each with a
different location of the damage.

1) DC1: damage location is at the midpoint of the first half
of the bridge.

2) DC2: damage location is at the midpoint of the bridge.
3) DC3: damage location is at the midpoint of the second

half of the bridge.
The damage was modeled using 20% stiffness loss at each
location. For each case, 300 events were generated: 200 in
healthy scenario and 100 in presence of damages. Each event
contains the values of the accelerations from the bridge with
white noise added to mimic measurement noise.4

B. Case Study 2: Data From Real-World Measurements
We considered signals from a bridge in Leuven, Belgium,

known as the KW51 railway bridge [42]. Spanning 115 m in

4A truncated Gaussian noise is selected to reproduce signal-to-noise ratios
within the range [25, 35 dB]; see also [23].
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TABLE III
SENSORS’ RELATIVE POSITION ALONG THE BRIDGE

Fig. 3. Spatial topology. (a) N = 3. (b) N = 5. (c) N = 9.

length and 12.4 m in width, this bridge features two separated
ballasted tracks situated at the north and south sides (namely
Track A and Track B). Both tracks have a curved horizontal
alignment, with an enforced speed limit of 160 km/h for
passenger trains. The bridge’s monitoring system provides
data in three different periods (starting from September 2018)
experiencing different bridge conditions.

1) The first period consists of 7.5-month measurements
under normal conditions.

2) The second period includes 4.5 months of measurements
from the retrofit installation, namely RI case.

3) The final period features 3.5 months of measurements
from the strengthened bridge, namely SB case.

V. RESULTS AND DISCUSSION

Data have been processed using MATLAB according to the
algorithm described in Section III.

A. Case Study 1: Results on Simulated Data
Scenarios with N ∈ {3, 5, 9} aligned sensors are considered,

with Table III providing the relative location of the sensors
along the bridge (0 and 1 represents the two ends of the
bridge). As for the spatial topology, fully connected topology
is assumed in both cases N = 3 and N = 5, while in the case
N = 9, two sensors are connected if at most three sensors
are found in between them. Fig. 3 shows the spatial topology
of the three considered scenarios. A fully connected topology
allows to infer the dependencies among sensor measurements
in the most comprehensive way, but it is also the most
expensive topology in terms of computational complexity. For
small-size systems (N = 3 and N = 5), the complexity is
not prohibitive even in the case of fully connected topology.
Differently, for the case with N = 9, we considered reduced
number of connections for complexity issues. The impact
of the number of connections on the inference capability
falls beyond the scope of this article. As for the temporal

extension, K = 512 discrete-time instants are considered, with
M = 7800 samples per event generated.5

To provide a visual representation of the impact on
the smoothness of healthy and damaged bridge conditions,
we compute (per event) the following statistics of the smooth-
ness: max, min, mean, and standard deviation. Fig. 4 shows
the smoothness statistics for the scenario with N = 5 sen-
sors considering the three damaged cases (DC1, DC2, and
DC3) compared with the normal condition (Healthy). Other
scenarios are not shown here for brevity. Apparently, the
smoothness behavior is affected by the absence/presence of
structural damages, but unfortunately no specific statistic (or
combination of statistics) showed to work effectively in all
considered cases.6 This motivated the use of a more general
metric like the KL divergence for the final detection.

Figs. 5–7 depict the damage index (Z ) for various scenarios
and DCs.7 More specifically, the first 60 events represent
healthy data and are used to establish the baseline distribu-
tion. The remaining part is made of 140 healthy events and
100 damaged events, showing the effectiveness of the proposed
methodology. It is apparent how the damage index behavior
is significantly affected by the presence of a damage and how
different locations of the damage have different impact. More
specifically, Figs. 5–7 show that the change in the damage
index (Z ) is more pronounced in DC2 than DC1 and DC3
for all three sensor configurations, suggesting that the damage
index might include information related to damage localization
and damage-magnitude estimation. However, given our focus
on damage detection, those tasks are beyond the scope of this
article.

A detection system should finally take decisions based on
a threshold-based rule, however, hyperparameter optimization
and assessment of detection performance fall beyond the scope
of the article. To provide an insight on the potential value of
the proposed methodology, Figs. 5–7 show possible upper and
lower control limits (UCL and LCL), computed as [43]

UCLe = µH + 7σH

√
α

(2 − α)

[
1 − (1 − α)2e

]
(9)

LCLe = µH − 7σH

√
α

(2 − α)

[
1 − (1 − α)2e

]
. (10)

In all cases, damage-index values fall inside (resp. outside) the
considered bounds when the damage is absent (resp. present),
thus confirming the validity of the proposed approach.

Also, Fig. 8 shows the ROC curves for each DC to further
illustrate the implications of threshold selection in terms of
probability of detection and probability of false alarm. It can
be noticed how misclassifications are reduced when increasing
the number of sensors with the N = 3 scenario showing worse
(but still sufficiently good) performance. The gap between
scenarios with increasing number of sensors (N ) seems to
saturate to attractive performance levels, thus suggesting that

5The last 120 samples are discarded.
6In the specific case shown here, the maximum value of the smoothness is

the most effective indicator.
7Tukey’s method is implemented using nonoverlapping windows with size

20 and tuned with I = 3, while EWMA is tuned with α = 0.05.
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Fig. 4. Smoothness statistics with N = 5 sensors. Simulated data. Healthy (resp. damaged) conditions in blue (resp. red). (a) DC1. (b) DC2.
(c) DC3.

Fig. 5. Damage index with N = 3 sensors. Simulated data. (a) DC1. (b) DC2. (c) DC3.

Fig. 6. Damage index with N = 5 sensors. Simulated data. (a) DC1. (b) DC2. (c) DC3.

Fig. 7. Damage index with N = 9 sensors. Simulated data. (a) DC1. (b) DC2. (c) DC3.

the proposed approach does not require large number of
sensors.

B. Case Study 2: Results on Real-World Measurements
We construct a graph using four sensors arranged in a

triangular spatial topology as in Fig. 2(b). These sensors are
part of the original six that were installed on the bridge, each
measuring acceleration in the horizontal and vertical directions
[42]: those measuring the acceleration in the vertical direction
are selected in this work. As for the temporal extension,
K = 16 discrete-time instants are considered.

Fig. 9 shows the smoothness statistics for the scenario with
N = 4 sensors considering the two damaged cases (RI and SB)

compared with the normal condition (Healthy). It is interesting
to notice that the RI case exhibits different statistics than the
Healthy case, while the difference is largely reduced when
comparing the SB and Healthy cases, that is, the strengthening
intervention somehow makes the bridge to behave similar to
the normal condition.

Fig. 10 depicts the damage index (Z ) for the considered
case with real-world measurement.8 More specifically, the first
60 events represent healthy data and are used to establish
the baseline distribution. The remaining part is made of

8Similar setting as with simulated data is assumed for Tukey’s method and
EWMA. UCL and LCL curves are also shown.
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Fig. 8. ROC curves for the numerical data.

222 healthy events, 149 events with RI case and 129 events
with the SB case. It is apparent how the results from the
real-world measurements confirm that the proposed damage
index is a relevant candidate for the design of effective SHM
systems. Additionally, the interesting behavior of the RI and
SB cases with respect to the Healthy case suggests that the
proposed damage index might be also useful to quickly assess
the validation of maintenance/repairing operations.

Also, Fig. 11 shows the ROC curve for the damage detec-
tion in real-world data, again showing the implications of
threshold selection in terms of probability of detection and
probability of false alarm.

As for performance comparison in the case of real-world
measurements, we also implemented a monitoring procedure
based on operational modal analysis (OMA) on an hourly
basis, utilizing ambient vibration data from the KW 51
Bridge. OMA is a popular method to identify modal fre-
quencies and mode shapes of bridges, often employed for
damage evaluation. More specifically, the modal frequencies
were derived according to [44] and signals analyzed via the
covariance-driven stochastic subspace identification algorithm
[45] and clustering approach recommended in [46]. To provide
a fair comparison with the proposed method, only global
vertical modes were considered. Furthermore, an unsuper-
vised deep-learning method based on a probabilistic temporal
autoencoder (PTAE) [47] has been considered as performance
bound.

Table IV presents the performance comparison regarding
accuracy, precision, and recall, where the UCL and LCL
were utilized as detection thresholds for the proposed GSP-
based approach and both the OME and the PTAE benchmarks.
In the case of OMA, a one-class support vector machine
(SVM) [48] was employed for damage detection. It is worth
mentioning that no optimization analysis was performed for
both approaches, so no optimality claim in terms of perfor-
mance. Also, OMA can be considered a traditional approach
while PTAE can be considered a recent AI-based approach.
Our proposed method slightly outperforms the former, while
exhibits some performance gap with the latter. On a different
note, we believe that it is important to stress that similar

Fig. 9. Smoothness statistics with N = 4 sensors. Real-world measure-
ments. Healthy (resp. damaged) conditions in blue (resp. red). (a) RI.
(b) SB.

performance to traditional approaches were achieved with the
proposed GSP-based methods despite requiring lower compu-
tational cost and having no critical dependency on some crucial
parameter. From a computational perspective, the OMA-based
approach require singular value decomposition of covariance
matrices and is quite sensitive to system-order selection. On
the other hand, deep-learning methods require a substantial
amount of data and significant computational resources to train
and run the model. It involves learning thousands of param-
eters and their utilization in bridge assessments, making it
resource-intensive and potentially inefficient for resource- and
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Fig. 10. Damage index with N = 4 sensors. Real-world measurements.
(a) RI. (b) SB.

Fig. 11. ROC curve for the experimental data.

TABLE IV
PERFORMANCE COMPARISON USING REAL-WORLD MEASUREMENTS

energy-constrained devices. In addition, deep-learning models
might be problematic to adopt in safety-critical systems due
to their black-box inherent behavior and poor explanaibility.
Conversely, the proposed GSP-based approach appears a very
promising candidate from performance, computational com-
plexity, robustness, and explainability points of view.

VI. CONCLUSION AND FUTURE WORK

We proposed a GSP-based algorithm for SHM of bridges
which effectively exploits both spatial and temporal structure
of data collected from sensors. Spatiotemporal graphs seemed
the natural formal structure for representing the sensors data
and related bridge behavior. The proposed algorithm processes
sensor data via low-complexity GSP techniques, then KL

divergence, Tukey’s outlier method, and EWMA filtering
are combined for damage detection. The assumption that
structural damages impact the statistics of the smoothness of
the corresponding graphs has been validated analyzing data
collected both from numerical simulations and from real-world
measurements. Comparisons with standard solutions from
common practice in structural engineering seem very promis-
ing and make GSP-based solutions potentially suitable for
cost-effective and resource-efficient real-time SHM systems.
Future work should focus on performing damage localization
using the proposed GSP-based methodology.
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